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Abstract A mathematical model is presented for the kinetic resolution of racemates.
It takes all intermediate binding steps into account and assumes that such steps are
reversible. The model describing dynamics of the chiral reaction products consists of
two nonlinear differential equations. With this model, the enantioselectivity of enzyme
has been studied. Mathematical and numerical simulation of the model show that there
are several ways to control the enantiomeric ratio (E) but the affinity and the binding
rates of the intermediate enzyme complex to the racemic substrates are the key steps
for the enzyme enantioselectivity.

Keywords Kinetic resolution of racemate · Transesterification · Enantioselectivity ·
Lipase · Mathematical modeling · Organic solvent

1 Introduction

Homochirality is one of the most exciting properties in the molecular components of
living organisms. It is known that L-forms of amino acids serve as building blocks of
proteins, and D-sugars are incorporated in the backbone of DNA, which are responsible
for the synthesis of chiral biomolecules such as proteins and enzymes [1–3]. The
biological receptor systems also recognize compounds with a specific chirality. Two
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enantiomers of a chiral molecule can exhibit completely different biological activities.
For example, one enantiomer of a racemic mixture can be an active drug whereas
the other can exhibit fatal toxicity within the body [4]. Therefore, the separation
of racemates and enhancement of one of the enantiomers are extremely important
for the pharmaceutical and agricultural purposes [5,6]. There are several analytical
methods used for the enantio-separation such as diastereomeric crystallization [7],
chromatographic techniques [8], asymmetric catalysis [9,10] and biocatalysis [11].
Only the biocatalytic kinetic resolution of racemic mixtures is considered in this study.

Commercial implementation of enzyme-catalyzed processes requires derivation of
the rate expression and estimation of the kinetic parameters, which are two important
steps in the process development. Rate equations and parameter values describe the
performance of the reactor in terms of the major factors that control the individual
reaction (e.g., temperature, enzyme loading, concentrations of substrates, etc.) [12,13].

Kinetic of racemates have been studied extensively. Most of these studies have
focused on model systems, which often lump several reaction steps into a single
step and contain only a few different chemical species and/or enzyme complexes.
Berendsen et al. [12] studied a detailed model developed based on reversible ping-
pong mechanism by taking both reversibility and competitive inhibition into account.
Xiong et al. [14] studied the kinetic resolution of one enantiomer, but not the resolution
of both enantiomers simultaneously.

To study enantioselective biocatalysis and determine impacts of individual reaction
steps on each chiral product, we developed a general mechanistic model. The model
considers all individual reaction steps as fully reversible and takes both enantiomers
as competing substrates in binding an enzyme.

2 Development of the model for an enantioselective reaction

The kinetic resolution of racemates is a popular method to synthesis enantiomerically
pure compounds. The kinetic mechanism of an enantioselective reaction follows ping-
pong bi–bi mechanism [15,16]. Taking the competition of both substrate enantiomers
for the enzyme active site into account, a kinetic model based on reversible ping-pong
bi–bi mechanism was applied to describe the kinetic behavior of such reactions, e.g.,
lipase catalyzed transesterification.

In development of this model, we assumed the following assumptions hold [17–19]:
(1) even sized enzymes are uniformly distributed and dissolved in the solution medium,
(2) enzyme deactivation is negligible, (3) concentrations of all intermediate enzyme
complexes are at equilibrium during the measurement, (4) inhibition of products was
negligible, (5) mass transfer resistance is negligible, and finally (5) all other reaction
conditions are constant during measurement.

The mechanism proposed for enantioselective reactions is depicted in Scheme 1.
In this mechanism, the enzyme E first reacts with the excess component C and the
by-product P and the enzyme–acyl complex EC are produced. In trans/esterification
reactions the excess component is usually the acyl donor component. Then, the enzyme
complex EC surrogates to the enzyme complex EE by a relaxation reaction. Then both
of the racemates LS and DS compete to bind the active site of the enzyme complex EE.
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Scheme 1 A mechanism for racemic reactions for enantioselective reactions

Consequently, two parallel pathways exist for the decomposition of the acyl–enzyme
intermediate. When DS combines to EE, the right side of the loop on this mechanism
is functional, and when LS binds to EE then the left loop of the mechanism becomes
functional (see Scheme 1). Depending on the substrate bound to the enzyme EE, either
EDS or ELS complexes are formed and they soon get into the relaxation reactions to
produce EDP and ELP complexes, respectively. In the final step, the enzyme releases
from the end products DP and LP. Then it becomes free in the reaction medium to
react with next excess component [22].

This is a general mechanism and it is assumed that all the steps are reversible.
The advantage of this mechanism is that it can later be adapted to any type of enan-
tioselective reaction whose intermediates will be determined by their own chemical
mechanisms by equating the appropriate reversible rate constant to zero.

Derivation of rate equations for complex enzymatic reactions is a tedious task which
requires manipulation with massive algebraic expressions. A number of derivation
methods were proposed for complex enzymatic systems [20,21]. We use the algebraic
method to derive rate equations for this mechanism here. There are 11 dynamic vari-
ables in this system: there are two substrates (LS and DS) and two products (LP and
DP). There is also a substrate C we assume it is in abundance and its product P which
will be considered as parameters in our derivation. Moreover, there is a free enzyme
form (E) and six enzyme-substrate complexes. We assume that total concentrations
of enzyme and its substrates LS and DS are constant over the course of the reaction.
Therefore, we have

[E]0 = [E] + [EC] + [EE] + [EDS] + [ELS] + [EDP] + [ELP] (2.1)

[DS]0 = [DS] + [E DS] + [EDP] + [DP] (2.2)

[L S]0 = [LS] + [ELS] + [ELP] + [LP] (2.3)

Here [E]0 [L S]0 and [DS]0 are the initial concentration of the enzyme and its two
substrates LS and DS, respectively. These assumptions leaves only 8 free dynamic
variables, which are EC, EE, EDS, ELS, EDP, ELP, DP and LP. According to mass
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action kinetics, the following eight differential equations describe how concentrations
of each variable changes over time:

d[EC]
dt

= k1[E][C] − k2[EC] − k3[EC] + k4[EE][P] (2.4)

d[EE]
dt

= k3[EC] − k4[EE][P] − k5[EE][DS] + k6[EDS] − k11[EE][LS]
+k12[ELS] (2.5)

d[EDS]
dt

= k5[EE][DS] − k6[EDS] − k7[EDS] + k8[EDP] (2.6)

d[EDP]
dt

= k7[EDS] − k8[EDP] − k9[EDP] + k10[E][DP] (2.7)

d[ELS]
dt

= k11[EE][LS] − k12[ELS] − k13[ELS] + k14[ELP] (2.8)

d[ELP]
dt

= k13[ELS] − k14[ELP] − k15[ELP] + k16[E][LP] (2.9)

And the equations for rates of change of DP and LP concentrations are

d[DP]
dt

= k9[EDP] − k10[E][DP] (2.10)

d[LP]
dt

= k15[ELP] − k16[E][LP] (2.11)

Under the quasi steady state assumption on the enzyme complexes, the differential
equations governing dynamics of the products become,

d[D P]
dt

= Vmax 1[DS] (�1+�2[D P]+�3[L P])−Vmax 2[D P] (�4+�5[DS]+�6[L S])
(�1+�2[L P]+�3[D P]) (�4+�5[DS]+�6[L S])+(�4[DS]+�5+�6[L S]) (�1+�2[D P]+�3[L P])

(2.12)
d[L P]

dt

= Vmax 3[L S] (�1+�2[D P]+�3[L P])−Vmax 4[L P] (�4+�5[DS]+�6[L S])
(�1+�2[L P]+�3[D P]) (�4+�5[DS]+�6[L S])+(�4[DS]+�5+�6[L S]) (�1+�2[D P]+�3[L P])

(2.13)

where, �i ’s, �i ,’s and Vmax j’s are as in Eqs. (5.19), (5.27) and (5.29)–(5.31), respec-
tively. Details of this derivation are given in the appendix. In an enzymatic reaction,
initial enzyme concentration is always much smaller than the initial substrate concen-
trations, which simplifies Eqs. (2.2) and (2.3) to

[DS]0 = [DS] + [D P] (2.14)

[L S]0 = [L S] + [L P] (2.15)

123



1536 J Math Chem (2013) 51:1532–1547

Notice that, in Eq. (2.12), if at least one of k5, k7 and k9 is zero then Vmax 1 becomes
zero and DP is not produced. Same is true for LP if at least one of k11, k13 and k15 is
zero [see Eq. (2.13)].

Without loss of generality, we assume [L S]0 = [DS]0 = 1 hereafter and do our
mathematical analysis and simulations under this assumption, which can be achieved
by dividing both sides of Eqs. (2.14) and (2.15) by [DS]0 and [L S]0, respectively and
defining new variables as [D P]/[DS]0 and [L P]/[L S]0.

3 Results

3.1 Steady state analysis of the model

Suppose that the system described by Eqs. (2.12) and (2.13) has a steady state at
([D P∗], [L P∗]). There are no temporal changes in the concentrations of DP and LP
at a steady state, hence d[D P]

dt

∣
∣
([D P∗],[L P∗]) = d[L P]

dt

∣
∣
([D P∗],[L P∗]) = 0 has to hold.

Therefore, the steady state of this system is described by the following two algebraic
equations

Vmax 1[DS∗] (�1+�2[D P∗]+�3[L P∗])−Vmax 2[D P∗] (�4+�5[DS∗]+�6[L S∗])
{

(�1+�2[L P∗]+�3[D P∗]) (

�4+�5[DS∗]+�6[L S∗])+. . .
(

�4[DS∗]+�5+�6[L S]∗)

(�1+�2[D P∗]+�3[L P∗])}

=0 (3.1)
Vmax 3[L S∗] (�1+�2[D P∗]+�3[L P∗])−Vmax 4[L P∗] (�4+�5[DS∗]+�6[L S∗])

{

(�1+�2[L P∗]+�3[D P∗]) (

�4+�5[DS∗]+�6[L S∗])+. . .
(

�4[DS∗]+�5+�6[L S]∗)

(�1+�2[D P∗]+�3[L P∗])}

=0 (3.2)

Since the terms in the denominators of these two equations are always nonnegative,
they simplify to,

Vmax 1[DS∗] (

�1 + �2[DP∗] + �3[L P∗])
−Vmax 2[DP∗] (

�4 + �5[DS∗] + �6[L S∗]) = 0 (3.3)

Vmax 3[L S∗] (

�1 + �2[D P∗] + �3[L P∗])
−Vmax 4[L P∗] (

�4 + �5[DS∗] + �6[L S∗]) = 0 (3.4)

If any of the matching steps in both loops are irreversible then this system has a
steady state at ([DS∗], [L S∗]) = (0, 0), which is equivalent to ([DP∗], [LP∗]) =
(1, 1) from Eqs. (2.14)–(2.15). To see this let’s assume both Vmax 2 = Vmax 4 =
0, since �1 + �2[DP∗] + �3[L P∗] > 0 the solution of Eqs. (3.3)–(3.4) becomes
([DS∗], [L S∗]) = (0, 0). Vmax 2 can be zero when one or more of the rate constants
k6, k8 and k10 are zero, and Vmax 4 vanishes when one or more of the rate constants
k12, k14 and k16 are zero. On the other hand, when one of k2 and k4P or both are zero,
�4 becomes zero [see Eq. (5.19)]. The steady state equations given in Eqs. (3.3)–(3.4)
simplifies to:
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Vmax 1[DS∗] (

�1 + �2[D P∗] + �3[L P∗])
−Vmax 2[D P∗] (

�5[DS∗] + �6[L S∗]) = 0 (3.5)

Vmax 3[L S∗] (

�1 + �2[D P∗] + �3[L P∗])
−Vmax 4[L P∗] (

�5[DS∗] + �6[L S∗]) = 0 (3.6)

From Eqs. (3.5)–(3.6), it is straightforward that [DS∗] = [L S∗] = 0 is a steady state.
Therefore, [D P∗] = [L P∗] = 1 is again a steady state.

When all the steps in this system are reversible, it has a steady state at
([D P∗], [L P∗]) such that [D P∗] < 1 and [L P∗] < 1.

3.2 Dynamics analysis of the model

The mechanism depicted in Scheme 1 has a symmetrical structure. We look at how
the dynamics of the final products LP and DP can be controlled when the macthing
steps in the left and right loops are irreversible.

Case A When the parameters k6 and k12 are both zero, the reverse reactions

E L S
k12→ L S + E E and E DS

k6→ DS + E E do not occur, which results in Vmax 2 =
Vmax 4 = 0 and simplifies Vmax 1 and Vmax 3 to

Vmax 1 = k5k7k9[E]tot

k7k9
= k5[E]0 and Vmax 3 = k11k13k15[E]tot

k13k15
= k11[E]0 (3.7)

Since all the terms in Eqs. (2.12) and (2.13) are common except Vmax 1 and Vmax 3,
the only way to dynamically control the production of LP and DP is to change ratio
of k5 and k11, which is defined as the ratio of enantioselectivity [17]. In Fig. 1, the
temporal changes in LP and DP concentrations are simulated numerically. To produce
this simulation, we numerically solved the model equations in Eqs. (2.12)–(2.13)
starting from the initial values [L P](0) = 0 and [D P](0) = 0 until it reaches the
steady state. We first fixed the parameter values. In this particular simulation, we set
k6 = k12 = 0, k11 = 10, [E]0 = 0.01 and all the other parameters to 1. As seen
in this simulation, all DS ends up becoming DP and all LS is converted into LP but
the production of LP is faster than the production of DP due to higher affinity of
the EE form of the enzyme against LS (k11 = 10) compared to its affinity to DS
(k5 = 1). For this parameter settings, all LS becomes LP and only about 20 % of DS
becomes DP until t = 1,000. The remaining 80 % of DS is converted into DP between
t = 1,000 and t = 6,000. After t = 6,000, [DP] and [LP] reach their steady states values
[D P∗] = [L P∗] = 1. The concentrations are dimensionless and time is in arbitrary
unit in these simulations.

Case B When k8 = k14 = 0, the reverse reactions E L P
k14→ E L S and E D P

k8→ E DS
do not occur, which results in again Vmax 2 = Vmax 4 = 0. In this particular case, Vmax 1
and Vmax 3 become equal to

Vmax 1 = k5k7

k6 + k7
[E]0 and Vmax 3 = k11k13

k12 + k13
[E]0 (3.8)
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Fig. 1 Simulation of LP and DP concentrations over time when k11 = 10, k6 = k12 = 0 and [E]0 = 0.01.
In this simulation the initial conditions are [L P](0) = 0 and [D P](0) = 0 and all other parameter values
are set to be 1. As seen in this figure, the production of LP is faster than the production of DP since the
enzyme’s affinity to LS is 10 times larger than its affinity to DS

All the terms in Eqs. (2.12)–(2.13) are common but the maximum rates Vmax 1 and
Vmax 3. The dynamics of LP and DP productions can be controlled by the parame-
ters k5, k7, k6, k11, k13 and k12. When k7/(k6 + k7) = k13/(k12 + k13), the only
way to control time courses for the production of LP and DP are to change the
ratio of k5 and k11 (enanioslectivity parameters). In a special case, if k6 � k7 and
k12 � k13 then k7/(k6 + k7) and k13/(k12 + k13) become roughly same and approx-
imately equal to 1, which means that the rate of conversion of EDS into EE and
DS is significantly slower than the rate of conversion of EDS into EDP, and the rate
of conversion of ELS into EE and LS is much slower than the rate of conversion
of ELS into ELP. When k7/(k6 + k7) �= k13/(k12 + k13) and k5 = k11, the ratio of
k7/(k6 + k7) and k13/(k12 + k13) determines the dynamics of DP and LP productions.
As an example, we numerically solved the model equations with an initial condition
[L P](0) = 0 and [D P](0) = 0 when k8 = k14 = 0, k13 = 10, [E]0 = 0.01
and the values of all the other parameters are 1. The result is shown in Fig. 2. As
shown in this simulation, both LP and DP concentrations reach the same steady state
[D P∗] = [L P∗] = 1 but the dynamics of [LP] is faster than the dynamics of [DP]
due to the faster conversion rate of ELS into ELP (k13 = 10). However, the difference
in DP and LP concentrations during transient period is significantly smaller than the
difference we observed in Fig. 1. For this parameter values, the modified form of the
enzyme EE binds to LS and DS equally fast and starts to convert DS and LS into DP
and LP, respectively. Since k13 = 10 and k7 = 1, unlike Case A, the dynamics of
LP is slightly faster than the dynamics of DP and the enzyme works on both of the
substrates at comparable rates. In case A, the enzyme prefers LS over DS until all LS
becomes LP.
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Fig. 2 Changes in LP and DP concentrations over time when k8 = k14 = 0 and [E]0 = 0.01. In this run,
all other parameters are set to be equal to 1 except k13. This parameter is chosen to be k13 = 10, which
10 times bigger than k7. As seen, the production of LP occurs faster than that of DP but both LP and DP
concentrations approach to 1 over time

Figure 2 shows LP and DP concentrations over time starting from [L P](0) = 0
and [D P](0) = 0. The parameter values for this simulation are k8 = k14 = 0 and all
other parameters are set to be equal to 1 except k13, which is chosen to be k13 = 10
to make the conversion of ELS into ELP 10 times faster than the conversion of EDS
into EDP. As seen in this simulation, the production of LP occurs faster than that of
DP but both LP and DP concentrations converge to 1.

Case C When k10 = k16 = 0, the maximum rates Vmax 2 and Vmax 4 become zero.

This corresponds to the system in which the reverse reactions E L P
k16→ E + L P and

E D P
k10→ E + D P do not occur. Vmax 1 and Vmax 3 simplifies to

Vmax 1 = k5k7k9

k6(k8 + k9) + k7k9
[E]0 and Vmax 3 = k11k13k15

k12(k14 + k15) + k13k15
[E]0

The dynamics of LP and DP can be controlled by changing the parameters
k5, k6, k7, k8, k9, k11, k12, k13, k14 and k15 since all the other terms in the model
equations are shared but Vmax 1 and Vmax 3. When k7k9

k6(k8+k9)+k7k9
= k13k15

k12(k14+k15)+k13k15
is true then the only way to control the production of LP and DP are to change the
ratio of k5 and k11.

Notice that for large values of k9 and k15, Vmax 1 ≈ k5k7
k6+k7

[E]0 and Vmax 3 ≈
k11k13

k12+k13
[E]0 hold and this case simplifies to Case B above. Moreover, for large values

of k7 and k13, Vmax 1 ≈ k5[E]0 and Vmax 3 ≈ k11[E]0, and the production of the final
products LP and DP are determined by only k5 and k11 (see Fig. 3).

When all the steps in the reaction are reversible, there must be some DS and LS at
the steady state giving the steady state values for both DP and LP <1. How much of
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Fig. 3 Simulation of LP and DP concentrations over time. In this simulation, we took k10 = k16 = 0 and
[E]0 = 0.01. The values of the parameters are k7 = k13 = 104, k14 = 0.1, k15 = 10 and all the other
parameters are set to be 1. Since k7 and k13 are too big, choosing different values for k14 and k15 has no
effect on the production of LP and DP, the curves for [LP] and [DP] are overlapping

Fig. 4 Simulated LP and DP concentrations over time when all the reaction steps are reversible. In this
simulation, we took [E]0 = 0.01 and all the parameter values are set to be 1 except k11 which is k11 = 100.
Similar to the previous runs, the initial conditions are [L P](0) = 0 and [D P](0) = 0. For this parameter
settings, the enzyme works on the conversion of LS into LP until t = 1,000. Then it starts working on the
conversion of DS into DP

DS and LS are converted into LP and DP at steady state are determined solely by the
selection of the values for the parameters.

In Fig. 4, the change in LP and DP concentrations over time are given when all
the reaction steps are reversible. For this simulation, all the parameter values are set
to be 1 except k11 which is the parameter that determines how fast the enzyme binds
to the substrate LS. This parameters is chosen as k11 = 100 and the total enzyme
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Fig. 5 Simulation of LP and DP concentrations when all the reaction steps are reversible. For this simulation,
we chose k11 = 100 and k2 = 10, and all the other parameter values are set to be 1. The initial conditions
are [L P](0) = 0 and [D P](0) = 0

concentration is [E]0 = 0.01. Similar to the previous runs, the initial conditions are
[L P](0) = 0 and [D P](0) = 0. For this set of parameter values, the steady state values
are calculated as [DP∗] = 0.4998 and [LP∗] = 0.9901. The enzyme acts on LS much
faster than DS and converts LS into LP, and then its starts to work on the conversion DS
into DP(when time is about t = 1,000). Only small fraction of DS (<1 %) is converted
into DP until t = 1,000. Due to higher k11 value, the steady state of LP is much larger
than the steady state of DP.

We also investigated how the reaction steps before formation of EE form of the
enzyme affects the dynamics of LP and DP productions. We numerically solved the
model equations by setting k2 = 10 when [E]0 = 0.01 (Fig. 5). For this parameter
settings, the steady state values are calculated as [DP∗] = 0.091 and [LP∗] = 0.909
which are smaller than the steady state values calculated in Fig. 4. Similar to the
pervious simulation, the enzyme acts on LS much faster and converts it into LP. Then
it starts working on DS. However, the steady state values for both DP and LP are

smaller due to the faster backward rate in the step E + C
k1�
k2

EC .

We studied how slower production rate at the final step of LP production affects the
production of LP and DP when EE form of the enzyme binds to LS faster than DS.
For this, we set k11 = 10 and k15 = 0.02 and all the other parameters to 1 and run a
simulation with an initial condition [L P](0) = 0 and [D P](0) = 0 (Fig. 6). Although
EE binds to LS 10 times faster than DS, it is still possible make production of LP slower
by choosing the other forward rate constants small enough. For this parameter settings,
the steady states of LP is smaller than the steady state of DP, which is calculated as
[DP∗] = 0.496 and [LP∗] = 0.165. A similar result can be obtained by choosing k13
small enough.
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Fig. 6 Simulation of LP and DP concentrations over time when all the reaction steps are reversible. For
this simulation, we set k11 = 10, k15 = 0.02 and all the other parameter values to 1. The initial conditions
are [L P](0) = 0 and [D P](0) = 0. Since the rate constant at the final step of the production of DP is
small enough (k15 = 0.02), LP is accumulated at a smaller rate than DP despite the fact that the enzyme’s
binding rate to LS 10 times faster (k11 = 10) than its binding rate to DS (k5 = 1).

Affects of the enzyme concentration on the dynamics of LP and DP production were
investigated by changing the total enzyme concentration in our simulation (Fig. 7).
The values of all the parameters are set to be 1 when k11 = 10. The initial conditions
are [L P](0) = 0 and [D P](0) = 0. The total enzyme concentrations were chosen as
5 × 10−3, 10−2 and 5 × 10−2. The amount of the enzyme increases the production
of rate of LP and DP as expected. However, the steady state concentrations of LP and
DP remain unchanged.

4 Discussions

A new mathematical model was proposed for the kinetic resolution of racemic
mixtures. The model simplifies to a 2-dimensional nonlinear differential equations.
Through mathematical analysis and numerical simulation of the model, enhancement
of enantioselectivity in racemic mixtures has been studied.

Our analysis of the model shows that all racemic substrates LS and DS are converted
into the chiral products LP and DP when at least one of the intermediate reaction step
is irreversible (Figs. 1, 2, 3). On the other hand, they are partially converted into their
respective products when all the steps are reversible. Amount of racemic substrates
converted into the chiral products are determined by selection of the parameter values.

The reaction steps until the formation of the complex EE have same effect on the
dynamics of the products. Our study also shows that the binding rates of EE to either
of the racemic substrates LS or DS is the key step for the enantioselectivity.

Enantiomeric ratio is a measure of enantio-enhancement of racemic solutions. Pre-
viously, Chen and Sih [23–25] studied enantioselective biocatalysis in organic solvent
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Fig. 7 Dependence of DP production on the enzyme concentration. In this simulation, we numerically
solved the model for three different concentrations of the enzyme: 5 × 10−3 (the diamond), 10−2 (the
dotted curve) and 5 × 10−2 (the solid line). In this run, all the parameters values are set to be 1 when
k11 = 10. Total enzyme concentration does not change the steady state concentration of DP. However, the
production of LP occurs at a faster rate for higher concentration of the enzyme

and used overall reaction rates to define enantiomeric ratio as the ratio of forward bind-
ing rate constants of the racemic substrates. They neglected the intermediate binding
steps. In this study, we have shown that their definition is true when both EDS and
ELS formation steps are irreversible (Case A) and their measure for enantiomeric ratio
can only be used for irreversible kinetic resolution of racemic reaction mixtures.

We have also mathematically shown that the enantiomeric ratio reduces to some
simplified forms involving individual rate constants when the system is not fully
reversible (Cases A–C). Under special circumstances, all such ratios simplify to the
enantiomeric ratio defined by Chen and Shi in [23–25].

Our model is applicable to any type of kinetic resolution of enzyme catalysed
racemic solutions, such as transesterification reactions. It is known that the transes-
terification reactions contain an important acylation step and acyl–enzyme complex
formation can be reversible [26] or irreversible [27]. Such complexes are crucial inter-
mediates in all lipase catalyzed reactions [28]. Thus, the enantioselectivity strongly
depends on the affinity of the acylated enzyme complex for transesterification reactions
(The complex form of the enzyme EE in the model).

Acknowledgments We would like to thank Prof. Dr. Uwe Bornscheuer from Ernst Moritz Arndt
Universität Greifswald for his comments and suggestions which measurably improved this paper

5 Appendix: Derivation of the model equations

The system of eight differential equations in Eqs. (2.4)–(2.11) and the mass conserva-
tion equations in Eqs. (2.1)–(2.3) describe dynamic evolution of the reaction network
in Scheme 1. To simplify this model further, we assume that this system is at quasi-
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steady state and all the enzyme complexes stay constant over the course of the reaction.
Therefore,

d[EC]
dt

= 0 = k1[E][C] − k2[EC] − k3[EC] + k4[EE][P] (5.1)

d[EE]
dt

= 0 = k3[EC] − k4[EE][P] − k5[EE][DS] + k6[E DS]
−k11[EE][L S] + k12[ELS] (5.2)

d[EDS]
dt

= 0 = k5[EE][DS] − k6[EDS] − k7[EDS] + k8[EDP] (5.3)

d[EDP]
dt

= 0 = k7[EDS] − k8[EDP] − k9[EDP] + k10[E][DP] (5.4)

d[ELS]
dt

= 0 = k11[EE][LS] − k12[ELS] − k13[ELS] + k14[E L P] (5.5)

d[ELP]
dt

= 0 = k13[ELS] − k14[ELP] − k15[ELP] + k16[E][LP] (5.6)

By solving Eq. (5.6) for [ELP], we get

[E L P] = α0[E L S] + α1[E][L P] (5.7)

where,

α0 = k13/(k14 + k15) and α1 = k16/(k14 + k15) (5.8)

After plugging [ELP] into Eq. (5.5) and solving it for [ELS] gives

[E L S] = α4[L S][E E] + α5[E][L P] (5.9)

Here α4 and α5 are defined in terms of individual rate constants as,

α4 = k11(k14 + k15)

k12(k14 + k15) + k13k15

α5 = k14k16

k12(k14 + k15) + k13k15
(5.10)

From Eq. (5.4), [EDP] becomes

[E D P] = α2[E DS] + α3[E][D P] (5.11)

α2 = k7/(k8 + k9) and α3 = k10/(k8 + k9) (5.12)

After substituting [E D P] into Eq. (5.3) and solving it [EDS], we obtain

[E DS] = α6[DS][E E] + α7[E][D P] (5.13)

α6 = k5(k8 + k9)

k6(k8 + k9) + k7k9
and α7 = k8k10

k6(k8 + k9) + k7k9
(5.14)
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Solution of Eq. (5.1) for [EC] is

[EC] = α8[E] + α9[E E] (5.15)

α8 = k1C

k2+k3
and α9 = k4P

k2+k3
, k1C =k1[C] and k4P =k4[P] (5.16)

By solving Eq. (5.2) for [EE] after substituting [EC] in Eq. (5.15), [EDS] in Eq. (5.13)
and [ELS] in Eq. (5.9), we get

[E E] = ρ[E] (5.17)

Here ρ is a function of the substrate and the product concentrations, which has the
following form

ρ := ρ ([D P], [L P], [DS], [L S]) = �1 + �2[D P] + �3[L P]
�4 + �5[DS] + �6[L S] (5.18)

Here, �i’s (i = 1 . . . 6) are defined as

�1 = k3α8 = k3k1C

k2P + k3

�2 = k6α7 = k6k8k10

k6(k8 + k9) + k7k9

�3 = k12α5 = k12k14k16

k12(k14 + k15) + k13k15

�4 = k4 − k3α9 = k2k4P

k2 + k3

�5 = k5 − k6α6 = k5k7k9

k6(k8 + k9) + k7k9

�6 = k11 − k12α4 = k11k13k15

k12(k14 + k15) + k13k15
(5.19)

After replacing [E E] in Eq. (5.15) by Eqs. (5.17), (5.15) becomes

[EC] = (α8 + α9ρ) [E] (5.20)

Substituting [E E] in Eq. (5.17) into Eq. (5.13) gives

[E DS] = (α6[DS]ρ + α7[D P]) [E] (5.21)

By substituting [E E] in Eq. (5.17) into Eq. (5.9), we obtain

[E L S] = (α4[L S]ρ + α5[L P]) [E] (5.22)

123



1546 J Math Chem (2013) 51:1532–1547

By plugging [ELS] in Eq. (5.22) into [ELP] in Eq. (5.7), we get

[ELP] = (α0α4[LS]ρ + (α0α5 + α1) [LP]) [E] (5.23)

When we replace [EE] in Eq. (5.13) by [EE] given by Eq. (5.15), we obtain

[EDS] = (α6[DS]ρ + α7[DP]) [E] (5.24)

Then substituting [EDS] in Eq. (5.24) into Eq. (5.11) gives us

[EDP] = (α2α6[DS]ρ + (α2α7 + α3) [D P]) [E] (5.25)

Plugging [ELP], [EDP], [ELS], [EDS], [EE] and [EC] into the conservation equation
for the enzyme given by Eq. (2.1), and then solving it for [E] we get

[E]
= [E]0 (�4+�5[DS]+�6[L S])

(�1+�2[L P]+�3[D P]) (�4+�5[DS]+�6[L S])+(�4+�5[DS]+�6[L S]) (�1+�2[D P]+�3[L P])
(5.26)

where,

�1 = 1 + α9 > 0

�2 = α1 + (1 + α0)α5 > 0

�3 = α3 + (1 + α2)α7 > 0 (5.27)

�4 = 1 + α8 > 0

�5 = α6 (1 + α2) > 0

�6 = α4(1 + α0) > 0

From Eqs. (5.25), (5.26) and (2.10), rate of change for [DP] becomes

d[D P]
dt

= Vmax 1[DS] (�1+�2[D P]+�3[L P])−Vmax 2[D P] (�4+�5[DS]+�6[L S])
(�1+�2[L P]+�3[D P]) (�4+�5[DS]+�6[L S])+(�4[DS]+�5+�6[L S]) (�1+�2[D P]+�3[L P])

(5.28)

Here Vmax 1 and Vmax 2 are defined in terms of rate constants as

Vmax 1 = k9α2α6[E]0 = k5k7k9

k6(k8 + k9) + k7k9
[E]0 > 0

Vmax 2 = (k10 − k9 (α2α7 + α3)) [E]0 = k6k8k10[E]0

k6(k8 + k9) + k7k9
> 0 (5.29)
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Finally, form Eqs. (5.23), (5.26) and (2.11), rate of change for [LP] becomes

d[L P]
dt

= Vmax 3[L S] (�1+�2[D P]+�3[L P])−Vmax 4[L P] (�4+�5[DS]+�6[L S])
(�1+�2[L P]+�3[D P]) (�4+�5[DS]+�6[L S])+(�4[DS]+�5+�6[L S]) (�1+�2[D P]+�3[L P])

(5.30)

Here Vmax 3 and Vmax 4 are given by

Vmax 3 = k15α0α4[E]0 = k11k13k15

k12(k14 + k15) + k13k15
[E]0 > 0

Vmax 4 = (k16 − k15 (α0α5 + α1)) [E]0=
k12k14k16[E]0

k12(k14 + k15) + k13k15
> 0 (5.31)
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